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JOHN GRANT and V. S. SUBRAHMANIAN

APPLICATIONS OF PARACONSISTENCY IN DATA AND
KNOWLEDGE BASES

ABSTRACT. The study of paraconsistent logic as a branch of mathematics and logic has
been pioneered by Newton da Costa. With the growing advent of distributed and often
inconsistent databases over the last ten years, there has been growing interest in paracon-
sistency amongst researchers in databases and knowledge bases. In this paper, we provide a
brief survey of work in paraconsistent databases and knowledge bases affected by Newton
da Costa’s important and lasting contributions to the field.

1. INTRODUCTION

This article surveys applications of paraconsistency in data and knowledge
bases. In recent years the handling of inconsistencies in knowledge bases
has become a practical problem. Knowledge bases are often built by put-
ting together information from various sources. In such a circumstance, it
is quite likely that inconsistencies may arise. In fact, with the large amount
of information available on many topics on the Internet, anyone gathering
data from different sites on the same or a similar topic is likely to find some
conflicting information.

Classical first-order logic is a very powerful tool for reasoning. How-
ever, it does not handle inconsistencies in a useful way, because every
formula (of the language under consideration) can be deduced from a
theory that contains an inconsistency. The term “paraconsistency” is often
used to refer to various approaches that have been applied to deal with
inconsistencies in a less global manner. One technique is to limit the rules
of inference: this is followed by the various calculiCn. Another method ex-
tends the truth values from False, True to a larger lattice. A third approach
stays with first-order logic but uses only (maximal) consistent subsets of
an inconsistent theory. A fourth proposal extends first-order logic with
various (typically) modal operators. We will deal primarily with the last
3 techniques because most of the work on paraconsistency in knowledge
bases uses them.

We use the language of deductive databases, where a knowledge base
consists of facts, rules, and integrity constraints. An inconsistency may be
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caused in various ways, such as contradictory facts, a contradiction caused
by some facts and additional facts derivable by rules, or by the interaction
of integrity constraints with some facts and rules. We do not deal with
database updates that can lead to inconsistencies; there is a substantial
research literature on theory change and belief revision that deals with that
issue.

Section 2 gives the notation used in this article. Section 3 considers the
extension of truth values. We discuss here annotated programs as well as
some special cases where it is not necessary to use annotated formulas. In
Section 4 we use maximal consistent subsets of the knowledge base for our
reasoning with inconsistency. The use of various operators is considered in
Section 5. We also deal with preferences between formulas in this section.
Section 6 is the summary.

2. NOTATION

In the research literature several definitions have been used for the concept
of a knowledge base. For example, some authors consider a knowledge
base to be a set of literals in a propositional language. In this paper we use
for our framework the terminology of deductive databases. We assume that
a first-order languageL exists which contains the predicate and constant
symbols needed to represent the knowledge base. Our results apply to any
such language.

A deductive database is often considered to have three components:
facts, rules, and integrity constraints. The rules are used to deduce addi-
tional facts. The integrity constraints represent semantic information about
the knowledge base. All these components of a deductive database are
expressed by means of clauses ofL. A clause has the form

A1, . . . , An← B1, . . . , Bk,

where theAi andBj may be literals (atoms or negated atoms) ofL.The
A1, . . . , An part is called theheadof the clause; theB1, . . . , Bk part is
called thebodyof the clause. The variables are assumed to be universally
quantified and all variables that appear in the head must appear in the body.
In the simplest case, forDatalogprograms,n = 1, and theA1, B1, . . . , Bk
are all atomic formulas.

For facts,k = 0; that is, facts have an empty body. For rules,k ≥ 1.
For integrity constraints,n = 0, that is, integrity constraints have an empty
head. An integrity constraint signifies that the conjunction ofB1, . . . , Bn
is not allowed. The case wheren > 1 is allowed is called adisjunctive
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database. If theBi may contain negation, the database is callednormal.
Negation in the body is usually treated asdefaultnegation. A program is
stratifiedif recursion through negation is not allowed.

Knowledge bases store information and answer queries posed by users.
A query, like an integrity constraint, is expressed as a clause with an empty
head. Such a query, rewritten here as← Q(x1, . . . , xn), to emphasize that
its free variables arex1, . . . , xn, is interpreted to mean: Find all tuples
〈a1, . . . , an〉 such thatQ(a1, . . . , an) is true in the knowledge base. In
particular, a query with no variables is a yes-no query. This brings up
the question of knowledge base semantics: what is meant by saying that
a formula is true.

The facts and rules provide syntactic information about the knowledge
base. The semantics is given by interpretations. An interpretationI con-
sists of a domainD and predicates and constants onD interpreting the
predicate and constant symbols ofL. We restrict our consideration to
Herbrand interpretations, whereD contains exactly one constant for each
constant symbol ofL. This is reasonable for knowledge bases, because all
the relevant constants are usually included in the facts. We writeBP for
the Herbrand base(variable-free atoms) of the knowledge baseP . The
truths of formulas in an interpretation are defined in the standard way. An
interpretation in which each formula of the knowledge base is true is called
a model. A model that does not include another model is calledminimal.

For Datalog programs without integrity constraints the semantics is
clear because there is a unique minimal model which is the intended model.
So we can take a formula to be true if it is true in this model. Hence the true
statements of the knowledge base are the true statements of the minimal
model. This approach to semantics, dealing with models, is calleddeclar-
ative semantics. For the purpose of computing answers to queries, two
other types of semantics are important: fixpoint semantics and procedural
semantics.Fixpoint semanticsapplies an operator calledTp on Herbrand
interpretations; the fixpoint of this operator is then taken as the meaning
of the knowledge base.Procedural semanticsrefers to a computational
method, using resolution in some form, to obtain answers to queries. An
important aspect of the work on knowledge base semantics has centered
on finding appropriate definitions for these semantics so that they provide
identical answers to queries.

However, the clarity of the semantics is lost when disjunction or nega-
tion is allowed in the clauses, because there may not be a unique model. In
such a case the meaning of the answers to a query may be ambiguous. In
fact, researchers have proposed various alternative semantics such as the
well-founded and stratified semantics: different semantics may give differ-
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ent answers to a query. Within each approach there may be a declarative,
fixpoint, and procedural semantics. The situation is greatly complicated
in case the knowledge base is inconsistent, for in this case standard logic
provides no models at all. The paraconsistent approaches, as we will see,
work around this problem in order to obtain meaningful answers to queries
in those cases.

3. EXTENDING THE TRUTH VALUES

We consider the case where the classical two truth values are extended to
many values. First we explore the concept of annotated logic programs and
then we consider a special case, the over-determined semantics in more
detail.

3.1. Annotated Logic Programs

Classical logic has two truth-values:true andfalse. In some applications,
particularly in the presence of inconsistencies, it is useful to have a larger
set of truth-values. In annotated logic each literal of a clause is annotated
by a truth value. We start by fixing the set of truthvalues,T . We assume
that T is a complete lattice under an ordering≤ on T . This means that
every subsetS of T has a least upper bound (lub),tS, and a greatest lower
bound (glb),uS. Additionally, we assume the existence of a function for
negation:¬ : T → T .

In particular,t, f is such a lattice withf < t. Another very useful such
lattice, FOUR, consists of{>, t, f, ⊥}, where⊥ < t, f < >. Intuitively,
⊥ denotes “unknown” and> denotes “inconsistent”. This important lat-
tice will get special consideration in the next subsection. The set of reals,
[0,1], is also a complete lattice under the usual≤. Here, 0 denotes false, 1
denotes true, and the real numbers between 0 and 1 may denote a degree
or probability of truth. Another lattice is [0,1]× [0,1], where〈µ1, µ2〉
is interpreted to mean: degree of beliefµ1, degree of disbeliefµ2, and
[µ1, µ2] ≤ [ρ1, ρ2] if µ1 ≤ ρ1 andµ2 ≤ ρ2. Here, [1,1] is the truth value
of an absolutely inconsistent belief. A literalL annotated by a truth value
µ ∈ T is written asL : µ. The annotated literalsL0, . . . , Ln form the
annotated clause

L0← L1, . . . , Ln.

An annotated logic program(ALP) is a finite set of annotated clauses.
The semantics of ALPs is defined by interpretations. In classical logic

an interpretation assigns to each atom (of the Herbrand base) the value
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true or false; for ALP, each atom is assigned an element ofT .The ≤
ordering onT extends to an ordering on interpretations in a natural way.
An interpretationI is said to satisfy the annotated atomA : µ if I (A) ≥ µ;
similarly, I is said to satisfy the annotated literal¬A : µ if I (A) ≥ ¬µ.
An interpretation is extended to the connectives and quantifiers and the
concept of model are defined in the usual way. It turns out that if annotated
literals¬A : µ are changed to annotated atomsA : ¬µ, the status of an
interpretation as a model does not change. Hence we can assume that ALPs
contain only annotated atoms.

Many concepts of logic programming (and knowledge bases) can be
extended to ALPs. In particular, every ALP has a least model which can be
taken as the intended model. This model can also be obtained by fixpoint
semantics. Additionally, the usual procedural semantics, SLD-resolution,
can be extended to ALPs to answer queries.

While the original work on paraconsistent logic programs only looked
at a syntactic fragment of the logic, two important efforts extended this to
a full first order logic. First, da Costa, Subrahmanian and Vago (1991) ex-
tended annotated frameworks and provided a rich model theory and proof
theory for them. Later, Abe, da Costa and Subrahmanian (1991) extended
the framework further to describe annotated set theory as well. Kifer and
Lozinskii (1989) extended the framework to include alternative forms of
negation in a pioneering paper. In recent years, the idea of incorporating
multiple modes of negation into a logic program has led to a host of work
on paraconsistent logics neatly summed up in Damasio and Pereira (1998).

3.2. The Over-Determined Semantics

The latticeFOUR is an important intuitively simple lattice for use in
annotated logic programs. In fact, it can be studied without using the ma-
chinery of annotations simply by using the values> and⊥ implicitly. So,
in this case, the interpretationI of a relationR, I (R), is represented as a
pairR = 〈R+, R−〉, whereR+ is the set of tuples true inR andR− is the
set of tuples false inR. Then, for an n-ary relationR, the set of tuples of
Dn can be divided into 4 types:

1. R1 = R+ ∩ R−: these are the tuples with truth value>.
2. R2 = R+ − R−: these are the tuples with truth valuet.
3. R3 = R− − R+: these are the tuples with truth valuef.
4. R4 = Dn − R+ − R−: these are the tuples with truth value⊥.

A relation isinconsistentif R1 6= ∅. As studied in Bagai and Sunderra-
man (1995) the usual algebraic operators on relations can be generalized to
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such interpretations. Computing answers to queries can then be performed
by writing the queries as relational algebra programs.

A much more elaborate approach is given in Wagner (1993) where two
types of negation are used: explicit negation and implicit negation. The
tuples inR− are explicitly negated forR: they are known to be false. The
tuples inDn − R+ are implicitly negated forR: they are not known to be
true. These concepts lead to four different notions of model. The concept
of liberal model corresponds to the models with truth values inFOUR.
The others are increasingly restrictive and calledcredulous, conservative,
andskeptical.

There are some disadvantages in reasoning with the semantics of
FOUR. One problem is that the Law of Excluded Middle does not hold.
This is due to the existence of incomplete relations where some tuples
may have the truth value⊥ for a relation. If we wish to use this law in our
reasoning, then this semantics is not appropriate.

A way to get around this problem is to omit⊥ and use instead of
the latticeFOUR its 3-valued upper semilattice. This allows for incon-
sistency but not incompleteness; so for example, the Law of Excluded
Middle holds. This semantics was introduced in Grant (1978) and further
studied in Grant and Subrahmanian (1995a). Treating it as a knowledge
base, the difference in the causal form from Datalog programs is that any
of theA1, B1, . . . , Bk may be either an atomic formula or the negation
of an atomic formula. In anOD-interpretationI , for every n-ary rela-
tion R and n-tuple〈a1, . . . , an〉, either I |=od R(a1, . . . , an) or I |=od

¬R(a1, . . . , an), or both.
An interpretation over the literals is expanded over all formulas by

using the standard rules for connectives and quantifiers. In particular,
I |=od F ← G if either I |=od F or I 6|=od G. Some important laws
of logic continue to hold in the OD-semantics.

Let A, B, C be metavariables ranging over ground atoms. Then the
following axiom schemes are valid in the OD-semantics:

1. (Law of Excluded Middle)A ∨ ¬ A.

2. (A ∨ B)← (A←¬B).

3. (Reasoning with Cases)A← ((A← B) & (A← C) & (B ∨ C)).

4. (Resistance to Inconsistency) It is not the case that (A & ¬A) |=od B.

Grant and Subrahmanian (1995a) also provide a computation procedure
similar to theTp operator of fixpoint semantics.
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4. REASONING WITH MAXIMAL CONSISTENT SUBSETS

Suppose we are given an inconsistent knowledge base, most of which is
reliable information, and we would like to use standard logic for reasoning.
We can take for the meaning of the knowledge base the set of its maximal
consistent subsets and reason in the usual way with those subsets. First
we explain the optimistic and cautious semantics. Then we show how the
concept of maximal consistent subsets can be applied to combine multiple
knowledge bases which contain integrity constraints.

4.1. Optimistic and Cautious Semantics

The optimistic and cautious semantics are explored in detail in Grant
and Subrahmanian (1995b). LetP be a knowledge base that may be
inconsistent andF a formula ofL. We define

1. P `∃ F iff there is some maximal consistent subsetP ′ ⊆ P such that
P ′ |= F .

2. P `∀ F iff P ′ |= F for every maximal consistent subsetP ′ ⊆ P .

The semantics using̀∃ is called theoptimisticsemantics. According to
this semantics, a statement that is true inanymaximal consistent subset is
taken to be true. The optimistic semantics has some interesting properties.
For example,

if P `∃ F1&F2, thenP `∃ F1 andP `∃ F2.

This is so because for any maximal consistent subsetP ′ such thatP ′ |= F1

& F2, we must haveP ′ |= F1 andP ′ |= F2. However, the converse is not
true: it may be thatP `∃ F andP `∃ ¬F , becauseF and¬F are true
in different maximal consistent subsets, but no maximal consistent subset
can haveF & ¬F true.

The semantics using̀∀ is called thecautioussemantics. According to
this semantics a statement is taken to be true only if it is true inall maximal
consistent subsets. With the cautious semantics we getP `∀ F1 & F2 iff
P `∀ F1 andP `∀ F2. Also, with the cautious semantics , there cannot be
a formulaF such thatP `∀ F andP `∀ ¬F . In general,P `∀ F implies
P `∃ F and if P is consistent, the concepts|=, `∃, and`∀ coincide. A
fixpoint operator is defined for optimistic semantics and a Kripke style
semantics using the modal operators3 (possible) and2 (necessary) is
developed for both the optimistic and cautious semantics.
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4.2. Knowledge Bases with Integrity Constraints

Up to this point we have dealt only with the facts and rules of the know-
ledge base. Now we consider integrity constraints. When knowledge bases
are combined, it is possible that the union of the facts and rules is consist-
ent, yet the resulting knowledge base is inconsistent because of integrity
constraints. We review here some of the results of Baral et al. (1991,
1992) where this problem is investigated by the use of maximal consistent
subsets.

We start by introducing some terminology. We assume that all the
clauses of the knowledge baseP are ground, i.e., have no variables and
that P is stratified. For clauses with variables we just make all possible
substitutions by constants to obtain all ground clauses. The semantics of
a knowledge base is given by its minimal models. In the definition of the
perfect model semantics, a relation≤ is defined between the atoms ofBP
as follows:

1. C < B if there is a clause inP with ¬B in the body andC in the head.
2. C ≤ B if there is a clause inP with B in the body andC in the head.
3. C ≤ B andB ≤ C if there is a clause inP with bothB andC in the

head.

Transitivity is then used to extend≤ to a partial order.
For minimal modelsM andN we say thatN is preferableto M if

∀A ∈ N −M∃B ∈ M − N such thatA < B. The intuition here is that
for the clauseC ← ¬B we prefer the minimal modelC to the minimal
modelB. Using this concept we define the set of preferred minimal mod-
els,PER(P ) by eliminating those minimal models that have a preferred
counterpart. We takePER(P ) for the semantics ofP .

We say that a knowledge baseP is consistentwith a set of integ-
rity constraintsIC if IC is true in every model ofPER(P ). We also
define a partial order≤ between knowledge bases:Pi ≤ Pj if ∀M ∈
PER(Pi)∃N ∈ PER(Pj) such thatM ⊆ N . Among a setP1, . . . , Pn, Pi
is calledmaximalif there is noPj with i 6= j , such thatPi ≤ Pj . Also,
P is calledcorrectwith respect toP1, . . . , Pn if P ≤ P1 ∪ . . . ∪ Pn. The
goal is to combine a set of knowledge basesP1, . . . , Pn to P in such a
way thatP is maximal among all consistent and correct combinations of
P1, . . . , Pn. In Baral et al. (1991) algorithms are given that yield such a
maximal combination for various cases of stratified logic programs.

The case considered in Baral et al. (1992) allows negated atoms in
the head of a clause. In such a case, even without considering integrity
constraints, the union of a set of consistent knowledge bases need not be
consistent; for instance, one may containA ← and the other¬A ←. As
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explained in the previous subsection, we reason by using maximal consist-
ent subsets of the union of knowledge bases. But then the question is how
to choose the maximal consistent subsets. We give integrity constraints
preferential treatment by insisting thatIC must be included in every max-
imal consistent subset. One way to accomplish this result is to take all
the consistent subsets ofP1 ∪ . . . ∪ Pn ∪ IC that containIC. Another
possibility is to take the maximal consistent subsets of the union without
IC and then applyIC to each such set and take the maximal consistent
sets for the result. It turns out that these two approaches yield the same
result. A third approach takes the maximal consistent subsets of the union
as in the second case withoutIC and eliminates any such set not consistent
with IC. This approach yields a different result.

5. EXTENDING THE LOGIC

5.1. Modal Logic

We already mentioned that in Grant and Subrahmanian (1995b) a modal
logic is used to describe the optimistic and cautious semantics. A more
elaborate approach to the use of modal logic for answering queries in an
inconsistent knowledge base is presented in Cholvy (1998). In that modal
system, calledQ′, the axioms about2 are:

2¬F → ¬2F and2F ∧2(F → G)→ 2G.

3 is defined as¬2¬.

The inference rules are Modus Ponens and Necessitation:` A⇒` 2A.
The two modalities used for answering queries areS andD as follows:

SF = 2F andDF = 3F ∧ ¬2F .

SF is interpreted to mean thatF ’s truth is sure;DF is interpreted to mean
thatF ’s truth is doubtful.

As far as the knowledge baseKB is concerned, the approach here is
to find all minimal inconsistent subsets ofKB, I1, . . . , Im, and then let
C = KB−⋃m

i=1 Ii. The formulas in C are not in any minimal inconsistent
subset, hence they are taken to besure. The formulas in the maximal con-
sistent subsets of

⋃m
i=1 Ii. are taken to bedoubtful.The answers to a query

are divided into 2 groups: the sure answers and the doubtful answers. We
also get 2 groups for the tuples that are not answers: the tuples that are
surely not answers, and all other tuples.
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5.2. Priorities

In Section 4.2 we considered the problem of inconsistency that arises when
consistent knowledge bases with integrity constraints are combined. Such
a combination can be achieved by using maximal consistent subsets. The
approach presented there treats all formulas and atoms of the knowledge
base on an equal basis. However, in many applications there may be a
preference of some formulas or atoms over others that should be taken into
consideration. A formal treatment of combining databases with preference
appeared recently in Pradhan et al. (1995). We do not discuss here another
method, presented in Naqvi and Rossi (1990) where earlier information is
superceded by later information and a procedural semantics is used.

In this work each database consists of a set of propositional atoms and
a set of integrity constraints. LetD1, . . . ,Dn be the databases and IC the
integrity constraints. Apriority > is defined between an atomA and a set
of atomsY = B1, . . . , Bm, asA > Y , meaning that the statementA is
preferred over the set of statementsY . Then, ifX = A1, . . . , An, X > Y

stands forA1 > Y , . . . ,An > Y .The priority relation is assumed to be
irreflexive but not necessarily transitive.

For the integrity constraintICi :← A1, . . . , Ak , we define Obj(ICi) =
{A1, . . . , Ak}. Clearly, a databaseD satisfiesIC if Obj(IC) 6⊆ D. For
a set of databasesD1, . . . ,Dn and integrity constraintsIC, an option is
a maximal subset ofD1 ∪ . . . ∪ Dn that satisfies every element ofIC.
An optionD contains anA-block if there isX ⊆ D andICi ∈ IC such
that Obj(ICi) = A ∪ X, i.e., the addition ofA causes the violation of an
integrity constraint. Then a databaseD is said tosatisfy the priorityA > Y
if eitherA ∈ D or Y ∩D = ∅ orD − Y contains an A-block. We writeO
for the set of options with respect to a given set of databases and integrity
constraints.

Consider now the case where an optionD ∈ O does not satisfy the
priority A > Y . There are four ways in whichO can be modified to reflect
the priority. First, theoption eliminationsemantics removesD from O.
Second, theoption orderingsemantics imposes a ranking on members
of O that givesD a lower status. It turns out that the formal definitions
of these two semantics yield equivalent results. The third method,option
transformationtransformsD to satisfy the priority. For a set of acyclic
priorities all three semantics can be shown to be equivalent. The fourth
semantics,option amplification, adds an atom to satisfy an unsatisfied
priority. This semantics is different from the other three.
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5.3. Introspection

The approach of You et al. (1995) uses inconsistency as a meta-level
concept. Two introspective operators are added to the languageC and
Cd . For a formulaA, CA means thatA is contradictory because bothA
and¬A are derivable. The meaning ofCdA is thatA is derivable from
inconsistent premises. These operators can then be used to construct addi-
tional formulas. A model theoretic semantics is developed, and it is shown
that every positive non-disjunctive program has a unique para-model. The
intuitiveness of the definitions and their applications are shown by various
examples where this approach gives more informative information than
other approaches.

6. SUMMARY

We surveyed applications of paraconsistency in data and knowledge bases.
We considered work done in extending the set of truth values, using max-
imal consistent subsets of an inconsistent knowledge base, and extending
first-order logic with additional operators. The proper handling of para-
consistency remains an important issue in working with large or combined
data and knowledge bases (Subrahmanian 1994).
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